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Abstract

We report on an approach for computing electronic structure utilizing solid-state
multi-center scattering techniques, but generalized to finite temperatures to model
plasmas. This approach has the advantage of handling mixtures at a fundamental level
without the imposition of ad hoc continuum lowering models, and incorporates bonding
and charge exchange, as well as multi-center effects in the calculation of the continuum
density of states.

1. Introduction

The generation of plasma equation of state data over wide ranges of temperature,
density and material composition' is a computationally intensive task. For this reason
there is a traditional reliance on single ‘average-ion-in-jellium’ models [2,3,4], to produce
tabulated data for pure elements, together with a model assumption for mixing
components for non-heterogeneous plasmas.

There are two main computational challenges with this model. The first is the proper
description of the thermodynamic contribution from the spherically symmetric effective
field of infinite extent and overall charge neutrality [’]. The second is the precise
description of resonance features exhibited in the continuum density of states [°,’], as
these are essential for accurate thermodynamic consistency as the material pressure
ionizes [*]. The latter in principle is a straightforward but numerically demanding task,
wavefunctions arising from single isotropic scattering are simple 1-dimensional
functionals of the self-consistent-field potential [*].

The main objection to the model is that it is expected to be inaccurate in the warm
dense mater regime, as it is well known from the cold and solid-state limit that the
electronic wave-function behavior strongly reflects the influence of multiple ion centers.
This influence manifests itself energetically in two inter-related behaviors. Sharply
defined bound states spread into bands due to the overlap of wavefunction tails on
neighboring nuclear sites, and continuum waves engage in multiple scattering, altering
the structure of the continuum density of states['"], and in particular modifying the
resonance features exhibited by ion-in-jellium models ['!,'*]. Theoretically this is a
challenging physical process to describe, as for two or more scatterers, there are an
infinite number of possible scattering events, and recursive solutions are required for
wave-functions (Figl).

The effect of multicenter wavefunctions in dense plasmas has been previously

investigated for dense plasma opacities by [°,'*] and X-ray Absorption Near Edge

Structure [°,'°,'7]. Our objective is to incorporate multiple scattering physics into plasma

equation of state models.



For equation of state applications it is required to calculate the energetics of the
plasma precisely and to also be smoothly continuous even under extreme changes in
temperature and density. This necessitates an all-electron approach to the self-consistent
field description. Furthermore, because of the strong isotropic form of the potential near
nuclear sites, multiple locally spherically symmetric coordinate systems are advantageous
for numerically modeling the exponentially varying self-consistent charge density. These
constraints suggest an approach to calculating electronic structure generally known as the
KKR method.

2. KKR methods

The KKR method, which was introduced by Korringa ['*,'], and Kohn and
Rostoker [*°] independently more than fifty years ago, is one of the most powerful
methods of calculating electronic structures of periodic solids, and has been applied
successfully to metals, semiconductors and compounds [*']. The method is formulated
upon multiple-scattering theory and hence is applicable not only to periodic systems but
also, for example, to isolated clusters of atoms [22,23,24,25]. In addition, under a coherent
potential approximation, the method can be applied to substitutionally disordered alloys
[26,27 282930 31 51 impurities [2,3,%4 3]

While the energy eigenstates were determined directly in the original framework
of KKR, it is nowadays more common to rather calculate the Green’s function without
knowing the eigenstates [*°,”,**]. This has several advantages over the original
framework. It bypasses the time consuming process of solving the eigenvalue problem.
Secondly perturbations can be treated more or less exactly; e.g. we can solve impurity
problems without introducing a (oft times huge) supercell. Finally a large class of
observables can be directly calculated from the Green’s function. In particular the
imaginary part of the diagonal greens function directly gives the charge density

E
p(F) = —I?me[f dE G(F 7 ,E)
which is the central iterative quantity to any local density functional theory based model
of electronic structure. Furthermore, because of the Herglotz properties of the Green’s
function, we may distort the linear integral on the real energy axis to some convenient
contour in the complex energy plane (Fig[2]).

o(r) = _Im [dE G(r,r;E) = _Im $dz G(r,r;Z)
JT JU

Because the Green’s function at complex energies has the structure on the real axis that is
Lorentzian broadened with a half-width proportional to the imaginary energy [*°,*"], the
replacement of the real energy integral by a contour integral in the complex energy plane
allows a very efficient and accurate calculation of the charge density [41,42,43,44,45]

Explicitly, the Green’s function is obtained in terms of the regular ‘ Z, (¥;E)’ and
irregular “ J L(?;E ) > solutions of the single-site Hamiltonian (at complex energy E and
angular channel L={l,m}) through
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in terms of the scattering path operator T, T(E ) describing the conversion of an incoming

electron wave at site ‘n’, with angular momentum index L, into an outgoing wave
function at site ‘m’, with angular momentum L', taking all possible scattering paths that
start at site ‘n’ and end at site ‘m’ [*°,*"]. For a periodic system, the scattering path
operator can be solved by integrating over k-points in the Brilloun zone a matrix

inversion of dimension N, (.. +1)", where is N, the number of atoms in the unit

atom
cell, and [/, is the maximum angular momentum channel considered.

Other quantltles of interest, such as optical constants [**,**], X-ray absorption [*"], or
electronic transport coefficients [*',”%,>*], can also be obtained from the Kubo-Greenwood
formula in terms of the off-diagonal Greens’ functions [**,>°,°>7 8

Several recent excellent textbooks [**,%°,°",%*] and reviews [, 64,65,66 67 %%] are
available for those interested in a more in- depth expostulation of the KKR formalism. In
addition, reviews applying the KKR method in the conceptually simplified framework of
model 1 and 2 dimensional scattering systems are found in [69 70,71,72,73]

It is important to note that the KKR method is fundamentally a conventional one—
electron averaged description of the electronic state using density functional theory
[7*,7,7] but generalized to handle multiple locally spherically symmetric scattering sites.
As such it is still subject to the same approximations and limitations inherent to the
average atom and density functional theory approximations.

For our purposes we have utilized and modified the University of Illinois materials
science code ‘MECCA’ ["], a spin-polarized scalar-relativistic KKR code for treating

complex disordered alloys ["*]. Fully relativistic KKR source code is also available at

[”]
3. Extensions for plasma descriptions

For solid state and materials science applications the KKR method is applied to
complex polyatomic crystalline systems at zero temperature with perhaps substitutional
disorders. For plasma applications we must consider systems where the ions positions are
amorphous [*°,*',*] or spatially disordered [**,**,*], in addition to the electrons being in
excited states at a finite temperature.

There are three potential approaches to treating spatial disorder. The first is to take
many instances of relatively small unit cells, with the intent that your ensemble is large
enough to approximate plasma averages, with the assumption that ‘edge effects’ of the
periodicity do not influence physical observeables. The second is to take large unit cells
with random ion positions in the unit cell, and assume that the cell size is large enough
that ‘self averaging’ occurs [*®]. The third is to analytically obtain a non-spherical
average of multicenter effects to obtain an effective Green’s function [B7,58 89 901

The initial studies reported here employed the first simple approach, as cpu
requirements increase with the complexity of the unit cell. To construct our ensemble of
random ion positions [’ ] e employed the algorithm of [**,’] to generate random
packings of equal sized [**] as well as poly disperse hard spheres [*°]. A molecular
dynamics based algorithm of [*®,”’] was employed as well and found equally effective.



The relative effective hard sphere radii for poly-elemental plasmas were set by
muffin-tin saddle point radii of neutral pseudo-atoms[”*]. The muffin tin saddle point
radii reflect an optimal boundary separating the spherical and non-spherical density
between neighboring atoms, and are used in the MECCA code to tessellate the space of
the unit cell into non-overlapping convex polyhedra centered about each nucleus (Fig
[3]). Unlike a traditional Voronoi/Delaunay tessellation [°,'°,'°'], which is formed by
the intersection of all planes placed midway between the nuclei, so-called ‘power’
tessellations ['**] place the intersecting planes midway between the surfaces of effective
hard spheres (Fig[4]). We employ the algorithm of ['*’] to efficiently power tessellate the
three dimensional space of the unit cell. (For a review of Voronoi Tessilation of
randomized ion positions see ['**].) This tessellation allows us to optimally integrate the
charge density inside the Voronoi polyhedra to accurately determine the chemical
potential. This integration is performed using radial spherically symmetric techniques
inside an inscribed sphere (Fig[7a]), whereas the truncated pyramidal regions extending
to the polyhedral surface are performed with numerical isoparametric methods ['*°,'%]
(Fig[7b]). This technique is orders of magnitude faster ['°’] than comparably accurate
results using shape function techniques ['**,'"] (ie. spherical harmonic decompositions of
3-dimensional polyhedral unit step functions) (Fig[8]).

The thermodynamic extension to finite temperatures is easily accomplished by
introducing Fermi occupation factors into the average electron per unit cell description,

generalizing the band energy as

Eband = _I;mg;dz (Z_Ef)G(Z)f(Z)

determining the free energy [''°] F (T) =F (T) -TS (T) via the electronic entropy
S(T) = f(Z)In f(Z)-(1- f(Z))In(l - f(Z))

To calculate the charge density at finite temperatures the deformation of the integration
contour in the complex energy plane must be adjusted to consider the contributions of the

Fermi factor [''','"%],

f(Z)= (] + e—ﬂ(Z—Ef))—l

in particular the potential contribution from (Matsubara) poles [ ] located at
w, = E, +im(2n +1)k,T. A modified contour employed by the MECCA code for low

temperatures in shown in Fig[5]. With higher temperatures, alternative contour
deformations may be more advantageous numerically. By decomposing the Green’s
function into single-site and multi-site scattering contributions (by adding and subtracting
the single site scattering “T” matrix from the scattering path “Tau” matrix)

113
]

G = Gsingle—site + G
=(Ziz-Z))+ Z(t-1)Z

multiple-scattering

it is possible using Jordan’s Lemma of complex variable analysis to write the charge
density as (see Fig[6])
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where only a finite number of Matsubara poles near the real energy axis contribute
appreciably. At higher temperatures it is also anticipated that appreciable electron
occupation will be found in channels of higher angular momentum [''*], this
decomposition allows their inclusion under a single site scattering approximation with
little computational overhead.

4. Comparisons with PURGATORIO calculations

Spin-unpolarized calculations were undertaken of ab-initio composite plasmas with
the MECCA code in order to compare with results from PURGATORIO. Plasma
mixtures were obtained from PURGATORIO using a simplistic ‘ideal-gas’ mixing
paradigm where, given an input mixture density pmix and temperature Tpix , pure element
results {of nuclear charge Z; and molecular atomic weight A;} are combined by
composition number fraction {fi} at effective densities peffi such that (a) all individual
elements are at a common electron chemical potential , and (b) the Wigner-Seitz spheres
are space filling

D=3

pl pﬂll’( i

( An alternative to condition (a) is that in lieu of the chemical potential the non-ideal free
electron pressure at the Wigner sphere surface are at a common value. This results in an
ambiguous definition of chemical potential.) By making such a comparison we test the
ad-hoc continuum lowering of the ion-sphere model as well as the effects of multi-center
scattering.

Our first comparison, Al3Ni,, was chosen for its admixture of ‘simple’ metallic
Aluminum and a characteristic ‘d’-wave element Nickle, and was run at cold and 5eV
electron temperatures, both at nominal solid density and six-fold compression. To isolate
the purely electronic effects of multi-site scattering these runs were performed by scaling
the D51 crystal structure ['"°,',''"] of the solid. In Fig.[9] we plot the computed density
of states at solid density (4.73 g/cc) and in the cold limit. In order to exhibit both the
valence bound states and continuum the density of states was plotted on a logarithmic
scale, which tends to de-emphasize the multi-center scattering effects on the structure of
the continuum. Nevertheless, although both models predict a strong ‘d’ state resonance,
there are strong differences in the number of available states near threshold, resulting in
15% decrease in the chemical potential predicted by MECCA. Note also, that due to the
differing local environments of the crystalline structure, there are site dependant atomic
sphere occupations in the MECCA model, and MECCA exhibits a charge transfer from
the aluminum to the nickel (an ionic bonding effect) not allowed in neutral ion-sphere
models. Upon heating, both models predict that the ‘d’- wave resonance, rather than
being broadened away, narrows up and is down shifted to the continuum Fig[10]. Cold
compression (see Fig[11]) substantially alters the structure of the continuum density of



states and produces discernable plasma polarization shift differences in the bound valence
states.

We use a second example, Aluminum Carbide at solid density and 5eV temperature,
to illustrate the further effects that finite temperature non-crystalline ion order will have
on electronic structure. Aluminum Carbide is an interesting case study because of the
nominal presence of shallow carbon 28 states in an ion-sphere description. Fig[12]
shows the effect of finite temperature electrons in a multiple-scattering description off of
the cold ion crystal structure. Not surprisingly the 2S state will form a band of states as
predicted by MECCA. Moreover, with thermal randomization of ion positions, random
snapshots of the plasma ensemble show in Fig[13] that the gap between the 2S and the
continuum density of states tends to fill in, providing a mechanism for effectively
lowering the continuum in a manner unavailable to ion-sphere models. The amorphous
ion positions also contribute approximately a 1/5" kT linewidth to the aluminum 2p
bound state positions (not shown).

A third example, Boron Nitride, differs from the previous two compounds in two
fundamental aspects. It has an open (low packing fraction) By crystal structure (otherwise
known by Pearson symbol hP4) with strong anisotropic bonds (Fig[14]). Electronically it
is known to be an insulator in the solid state. This is in strong contrast with ion-sphere
models such as PURGATORIO, which shallow Nitrogen and Boron bound 28 states (
Boron 2S indiscernible from the continuum onset on the scale of Fig[15] ) and a partially
filled smooth continuum density of states, in other words, a classic conductor.
Gratifyingly, MECCA predicts a partially filled band of states below the onset of the
continuum, with a deficit of available continuum states until 0.228 Hartrees into the
continuum, giving an insulating gap of 9.9¢V.

If one were to imagine an experiment to rapidly (and isochorically) heat Boron
Nitride to an electron temperature sufficient to populate continuum states above the gap,
predictions of conducting electrons (crudely defined as delocalized states above the
energy zero) would still differ because of the gap by a factor of three between MECCA
and PURGATORIO (3.46 versus 1.22 electons/per site at 16eV — see Fig[16]). This
discrepancy is ameliorated, however remains significant, by allowing the ion positions to
thermally randomize. As seen in Fig [17], the main effect remains an effective lowering
of quasi-continuous states below that predicted by ion-cell models.

The examples presented here are not intended to be the best or final prediction
available by multi-center scattering models. In particular the open crystal structure of
Boron Nitride would benefit form the inclusion of empty sphere atomic sites in the muti-
center scattering basis, and we have not performed spin-polarized calculations in order to
directly compare with the results available from PURGATORIO. Rather, these examples
are intended only to be representative of multi-center effects not available from
conventionally used models.

5. Future Directions
Further explorations concerning the quantitative convergence of thermodynamic

properties of plasmas with increasing unit cell size and or ensemble sampling are clearly
called for at this juncture. Clearly such studies are contingent on computational efficiency



[''*], and it should be noted that each energy point along the complex energy plane

integration is an independent calculation that can be computed on parallel processors.

Several computational improvements to the MECCA model can be pursued.
Inconsistency between the Fermi Level and the charge density due to the KKR truncation
of angular momentum channels can be compensated by Lloyd’s formula ['"®,'*°,"*'], and
the radial mesh about each site could be optimized to reduce interpolation error for
quadrature based integration of Voronoi polyhedra.

In addition, enhanced physics modules, such as fully relativistic multi-site scattering
[122,123,124,125,126,127,128,129,130,131,132,133], improved exchange-correlational functionals, as
well as treatments beyond the local density functional approximation ["**,**,'*°], can also
be incorporated. One area of active research is the extension of KKR methods to full
potential / non-spherically symmetric site scatters [l37,l38,139,140,141,142,143,144]. This
approach has been hampered by the lack of an efficient calculational method for the near

field corrections to the Poisson correction for charge densities of arbitrary shape['*,'*].

6. Summary

We reported on a non-spectral Green’s function approach for calculating the
electronic structure of spatially disordered systems at finite electron temperature. This
approach has several advantages for plasma modeling. It is an all electron (no pseudo-
potential) method, without ad hoc continuum lowering, that can be used for ab-initio
modeling of mixtures. Comparisons with the ion-sphere model PURGATORIO showed a
generic multi-site scattering effect on the density of states, namely that shallow valence
bound states formed bands, with random non-crystalline order filling gaps between
banded states and the positive energy continuum states to form a large effective
continuum lowering.
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Fig[1]. Icon illustrating one of an infinite number of scattering path events possible with
multiple scatterers.
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Fig[2]. Typical contour integration for zero temperature charge density. We use a Gauss-
Legendre method on the parameterization of the energy in the form E = re” to give

[ldE g(E)=Y W, f(X,)

where

Wn=i(¢b—¢a)xnw(§n) Xn=rexp[(¢b;¢a)gn+(¢h+¢a)l

2 2
in terms of the Gauss-Legendre absissca &, and weights w(&,). The contribution of
deeply bound core states are often approximated by their isolated atom functional form.



Fig[3]. Illustration of 3-dimensional Voronoi Tesselation. Shown are two polyhedra
about neighboring atoms in the crystalline CsCl (B2) structure. The polyhedra are formed
from 14 planes separating the nearest neighbor atoms, and results in 36 edge/24 vertex
structures. Non crystalline ion positions result in complex tessellation structures.
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Fig[4]. 2-d illustration of Voronoi versus power diagrams. Voronoi diagrams (red) parcel
space into regions geometrically closer to one point nucleus than any other, while power
diagrams (blue) parcel space into regions closest to finite effective radii of the atoms

(circles).
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function) form. The contribution along the semi-circular path neglects the Fermi factor,
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Gauss-Laguerre numerical quadrature, and they converge quickly along the path away
from the Fermi energy.
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Fig[6]. Alternative complex energy contour for higher temperatures. The dimensionality
of the matrices used in constructing Gns are much greater than for Gy ,but are required
for fewer discrete Matsubara frequencies as their magnitude decays with
Temperature/distance from the real energy axis.



sl
ST
A TN
ZasgunaniiRRIn

NN

\
.%a«mw
255N
”ﬂﬂ&«u&!ﬂﬂﬂt———ﬂ—ﬂmﬂf
T

NN
AL
NS LA

NS

=

=
(]
=
O
=
=4
w2
e,
O
9
S
(&)
wn
g
=
.lm
WO
OIS
OE- B
35
o=
5 €
=g
s 5
=i
Q o
O
= o
< .Q
=g
< 5
= O
ke
)O
2 a3
5 o
g 3
© o
=
o &
> g
< 3
“— O
°c o
2 2
o
g g
S O
e
(D=
Q
[¢0]
=%
<
< 8
50 Bp
— &

(x"y'2)

X=t

m—

~

(E.n.5)

&:

(b)

Fig[7b]. The region interior to the Voronoi surface and exterior to an inscribed sphere can

be conformally mapped to a truncated pyramid, and further to a cube, for standard

numerical quadrature.



M w b
5 > -8
9 40 2 40

IIIIIIII{—

1
—
=S
S TTTTTTI

12
i i
6 "6 8 10 12 14 16 18 2
TFrce] T 1 TFT ]

40(ra—a BCC 7]
HO0—o6 SC —

Integ. time (msec)
w
o

©o
—
o
—
N
'y
=
[y
o =

80

—~—~
“o
o
X
0
]
E 40
0
o
®
£
n

40
20 35
M 30
6 8 10 12 14 16 6 8 10 12 14 16 18 20
Lax Ng/dimension

[=2]
o
T 7T " Ho
(=]
—
-t
=k
-t ] A
=4
-] A
=
—
o]
IIIIIII—LS—!

VP (msec)
=
o

Figure[8].Comparison of time required from shape function method (left panel) vs the
present method (right panel) to achieve a cetain level of accuracy for an analytical Van
Morgan Potential ['*’]. Bottom panel shows the time required for the construction of
boundary information for each voronoi polyhedra, middle panel indicates the integration
time and the top panel shows the logarithmic error in the interstitial charge. The three
lines (with open circle, triangle and star) in each panel shows the results for SC, BCC and
FCC structures respectively



5_
4_
| AI3Ni2 OeV

24 4.73g/cc (py)

—— Purgatorio u=0.357au
—— Mecca pu=0.307au

'IOO—: al

oA - ni

6_
3 1 ® N*10.00
& ] ¥ AF3.00
kS
> 24 O Ni*10.76
[ (1 Al(a)* 2.55
3 1 Al(b)* 2.39

]
- MT

T T T T T |
-4 -3 -2 -1 0 1
Energy (Hartrees)

Fig[9]. Density of states for crystalline ordered solid. The two in-equivalent Al sites
(labeled ‘a’ and ‘b’) exhibit different average ionicities in the MECCA model due to the
differing local environment, and show values differing from intuitive noble gas core
values indicative of charge transfer. The arrows point to the differing prediction in the
Fermi energy.
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Fig[10]. The crystalline solid with electrons heated to 5eV. Both models exhibit a ‘d’
wave resonance state that becomes more narrowly peaked and downshifted to the
continuum threshold.
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Fig.[11] Upon compression the effects of multi-center scattering on the structure of the
continuum density of states become more pronounced, discernable shifts appear in the
valence bound states, and charge exchange differences between models are accentuated.
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Fig[13]. An expanded view of the continuum density of states shown in the last figure,
but showing ensemble snapshots of amorphous plasma ion positions. The chemical
potential for the amorphous sample are in close agreement to each other and indicate
adequate micro-canonical sampling.



Fig[14]. Two views of the open crystral structure of Boron (red) Nitride. The size of the
spheres represent the Wigner Seitz radii.
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Fig[15]. Occupied density of states for cold solid Boron Nitride.
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The effect of heating the electrons but keeping the atoms in their crystalline
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Fig[17]. Five representative ion position snapshots from a plasma ensemble. The average
conduction electron per site is double that of the thermally excited crystal insulator, but
significantly smaller than predicted by typical plasma ion-sphere models.
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